Подвійна роль мікроглії в патогенезі розсіяного склерозу
DOI:
https://doi.org/10.30978/UNJ2018-3-5Ключові слова:
мікрогліальні клітини, нервова система, розсіяний склероз, цитокіни, демієлінізація, ремієлінізаціяАнотація
Наведено сучасні дані літератури щодо імунозахисної, нейроцитотоксичної та нейропротекторної функції мікрогліальних клітин ЦНС. Проаналізовано гетерогенність цих клітин. Показано їх фізіологічну роль у здоровому організмі (захист від інфекційних збудників, контроль за діяльністю нейронів, фагоцитозом пошкоджених клітин мозку та агрегованих білків). Обговорено дані про нейротоксичну та демієлінізувальну дію активованих мікрогліальних клітин самостійно чи в кооперації з імунними клітинами при дегенеративних та автоімунних захворюваннях ЦНС, зокрема при розсіяному склерозі. Наведено дані літератури про протизапальну та ремієлінізувальну дію мікроглії та гуморальних чинників, які сприяють її нейропротекторній функції. Зроблено висновок, що мікроглії притаманні, окрім імунозахисних, нейропротекторні та нейротоксичні функції, які виявляються при автоімунній та дегенеративній патології ЦНС.
Посилання
Lissaniy NI Immune system of brain (Russian). Kyiv: Vit- A-Pol., 1996:242.
Ajami B, Bennett JL, Krieger C, McNagny KM, Rossi FM. Infiltrating monocytes trigger EAE progression, but do not contribute to the resident microglia pool. Nat Neurosci. 2011;14:1142-1149.
Arnett HA, Mason J, Marino M, Suzuki K, Matsushima GK, Ting JP. TNFα promotes proliferation ofoligodendrocyte progenitors and remyelination. Nat Neurosci. 2001;4:1116-1122.
Babcock AA, Kuziel WA, Rivest S, Owens T. Chemokine expression by glial cells directs leukocytes tosites of axonal injury in the CNS. J Neurosci. 2003;23:7922-7930.
Berman JW, Guida MP, Warren J, Amat J, Brosnan CF. Localization of monocyte chemoattractantpeptide-1 expression in the central nervous system in experimental autoimmune encephalomyelitis and trauma in the rat. J Immunol. 1996;156:3017-3023.
Bettelli E, Das MP, Howard ED et al. IL-10 is critical in theregulation of autoimmune encephalomyelitis as demonstrated by studies of IL-10- and IL-4-deficient andtransgenic mice. J Immunol. 1998;161:3299-3306.
Block ML, Zecca L, Hong JS. Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Neurosci. 2007;8:57-69. doi: 10.1038/nrn2038.
Block ML, Hong JS. Microglia and inflammation-mediated neurodegeneration: Multiple triggers with acommon mechanism. Prog Neurobiol. 2005;76:77-98.
Boche D, Cunningham C, Gauldie J, Perry VH. Transforming growth factor-β 1-mediated neuroprotectionagainst excitotoxic injury in vivo. J Cereb Blood Flow Metab. 2003;23:1174-1182.
Brodie C. Differential effects of Th1 and Th2 derived cytokines on NGF synthesis by mouse astrocytes. FEBS Lett. 1996;394:117-120.
Colton CA, Gilbert DL. Production of superoxide anions by a CNS macrophage, the microglia. FEBS Lett. 1987;223:284-288.
Davalos D, Grutzendler J, Yang G et al. ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci. 2005;8:752-758.
De Groot C, Bergers E, Kamphorst W et al. Post-mortemsampling of MS brain lesions — Increased yield of active demyelinating and (p) reactive lesions. Brain. 2001;124:1635-1645.
Di Filippo M, Sarchielli P, Picconi B, Calabresi P. Neuroinflammation and synaptic plasticity: theoretical basis for a novel, immune-centred, therapeutic approach to neurological disorders. Trends Pharmacol Sci. 2008;29:402-412. doi: 10.1016/j.tips.2008.06.005.
Ding AH, Nathan CF, Stuehr DJ. Release of reactive nitrogen intermediates and reactive oxygenintermediates from mouse peritoneal macrophages. Comparison of activating cytokines and evidence for independent production. J Immunol. 1988;141:2407-2412.
Frischer JM, Bramow S, dal-Bianco A et al. The relation between inflammation and neurodegeneration in multiple sclerosisbrains. Brain. 2009;132(5):1175-1189.
Gomez-Nicola D, Perry VH. Microglial dynamics and role in the healthy and diseased brain: A paradigmof functional plasticity. Neuroscientist. 2015;21:169-184.
Gordon S. Alternative activation of macrophages. Nat Rev Immunol. 2003;3:23-35.
Hanisch UK, Kettenmann H. Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci. 2007;10:1387-1394. doi: 10.1038/nn1997.
Hanisch UK, Kettenmann H. Microglia: active sensor and versatile effector cells in the normal andpathologic brain. Nat Neurosci. 2007;10:1387-1394.
Hemmer B, Archelos JJ, Hartung HP. New concepts in the immunopathogenesis of multiple sclerosis. Nat Rev Neurosci. 2002;3:291-301.
Heppner FL, Greter M, Marino D et al. Experimental autoimmune encephalomyelitis repressed by microglial paralysis. Nat Med. 2005;11:146-152.
Jiang L, Chen SH, Chu CH et al. A novel role of microglial NADPH oxidase in mediating extra-synaptic function of norepinephrine in regulating brain immune homeostasis. Glia. 2015;63:1057-1072. doi: 10.1002/glia.22801.
Kennedy KJ, Strieter RM, Kunkel SL et al. Acute and relapsing experimentalautoimmune encephalomyelitis are regulated by differential expression of the CC chemokines macrophageinflammatory protein-1a and monocyte chemotactic protein-1. J Neuroimmunol. 1998;92:98-108.
Kierdorf K, Prinz M. Factors regulating microglia activation. Front Cell Neurosci. 2013;7:44. doi: 10.3389/fncel.2013.00044.
Kim SU, de Vellis J. Microglia in health and disease. J Neurosci Res. 2005;81:302-313. doi: 10.1002/jnr.20562.
Kreutzberg GW. Microglia: a sensor for pathological events in the CNS. Trends Neurosci. 1996;19:312-318. doi: 10.1016/0166-2236 (96)10049-7.
Kumagai N, Chiba Y, Hosono M et al. Involvement of pro-inflammatory cytokines and microglia in an age-associated neurodegeneration model, the SAMP10 mouse. Brain Res. 2007;1185:75-85. doi: 10.1016/j.brainres.2007.09.021.
Lampron A, Larochelle A, Laflamme N et al. Inefficient clearance of myelin debris by microglia impairs remyelinatingprocesses. J Exp Med. 2015;212:481-495.
Lampron A, Pimentel-Coelho PM, Rivest S. Migration of bone marrow-derived cells into the centralnervous system in models of neurodegeneration. J Comp Neurol. 2013;521:3863-3876.
Li L, Lu J, Tay SS et al. The function of microglia, either neuroprotection or neurotoxicity, is determined by the equilibrium among factors released from activated microglia in vitro. Brain Res. 2007;1159:8-17. doi: 10.1016/j.brainres.2007.04.066.
Lue LF, Kuo YM, Beach T, Walker DG. Microglia activation and anti-inflammatory regulation in Alzheimer’s disease. Mol Neurobiol. 2010;41:115-128. doi: 10.1007/s12035-010-8106-8.
Martinez FO, Sica A, Mantovani A, Locati M. Macrophage activation and polarization. Front Biosci. 2008;13:453-461.
Mason JL, Suzuki K, Chaplin DD, Matsushima GK. Interleukin-1β promotes repair of the CNS. J Neurosci. 2001;21:7046-7052.
Masuch A, Shieh CH, van Rooijen N, van Calker D, Biber K. Mechanism of microglia neuroprotection:Involvement of P2X7, TNFα, and valproic acid. Glia. 2016;64:76-89.
Minghetti L, Polazzi E, Nicolini A, Levi G. Opposite regulation of prostaglandin E2 synthesis bytransforming growth factor-B1 and interleukin 10 in activated microglial cultures. J Neuroimmunol. 1998;82:31-39.
Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation. Nat Rev Immunol. 2008;8:958-969. doi: 10.1038/nri2448.
Mrak RE, Griffin WS. Glia and their cytokines in progression of neurodegeneration. Neurobiol Aging. 2005;26:349-354. doi: 10.1016/j.neurobiolaging.2004.05.010.
Nakamura Y. Regulating factors for microglial activation. Biol Pharm Bull. 2002;25:945-953. doi: 10.1248/bpb.25.945.
Neumann H, Kotter MR, Franklin RJ. Debris clearance by microglia: an essential link between degeneration and regeneration. Brain. 2009;132:288-295. doi: 10.1093/brain/awn109.
Nimmerjahn A, Kirchhoff F, Helmchen F. Resting microglial cells are highly dynamic surveillants of brainparenchyma in vivo. Science. 2005;308:1314-1318.
Pérez-Cerdá F, Sánchez-Gómez MV, Matute C. The link of inflammation and neurodegeneration inprogressive multiple sclerosis. Mult Scler Demyelinating Disord. 2016;8:145-162.
Perry VH, Nicoll JA.R., Holmes C. Microglia in neurodegenerative disease. Nat Rev Neurol. 2010;6:193-201.
Popovic N, Schubart A, Goetz BD et al. Inhibition of autoimmuneencephalomyelitis by a tetracycline. Ann Neurol. 2002;51:215-223.
Qin L, Liu Y, Hong JS, Crews FT. NADPH oxidase and aging drive microglial activation, oxidative stress and dopaminergic neurodegeneration following systemic LPS administration. Glia. 2013;61:855-868. doi: 10.1002/glia.22479.
Ransohoff RM. A polarizing question: Do M1 and M2 microglia exist?. Nat Neurosci. 2016;19:987-991.
Ransohoff RM, Brown MA. Innate immunity in the central nervous system. J Clin Investig. 2012;122:1164-1171.
Ransohoff RM, Hafler DA, Lucchinetti CF. Multiple sclerosis — A quiet revolution. Nat Rev Neurol. 2015;11:134-142.
Rasmussen S, Wang Y, Kivisakk P et al. Persistent activation ofmicroglia is associated with neuronal dysfunction of callosal projecting pathways and multiple sclerosis-likelesions in relapsing — Remitting experimental autoimmune encephalomyelitis. Brain. 2007;130 (11):2816-2829.
Rosales-Corral S, Reiter RJ, Tan DX et al. Functional aspects of redox control during neuroinflammation. Antioxid Redox Signal. 2010;13:193-247. doi: 10.1089/ars.2009.2629.
Satoh T, Lipton SA. Redox regulation of neuronal survival mediated by electrophilic compounds. Trends Neurosci. 2007;30:37-45. doi: 10.1016/j.tins.2006.11.004.
Selenica ML, Alvarez JA, Nash KR et al. Diverse activation of microglia by chemokine (C–C motif) ligand 2 overexpression in brain. J Neuroinflamm. 2013;10:86.
Selkoe DJ. Alzheimer’s disease is a synaptic failure. Science. 2002;298:789-791. doi: 10.1126/science.1074069.
Simpson JE, Newcombe J, Cuzner ML, Woodroofe MN. Expression of monocyte chemoattractantprotein-1 and other β-chemokines by resident glia and inflammatory cells in multiple sclerosis lesions. J Neuroimmunol. 1998;84:238-249.
Singh S, Metz I, Amor S et al. Microglial nodules in earlymultiple sclerosis white matter are associated with degenerating axons. Acta Neuropathol. 2013;125:595-608.
Streit WJ. Microglia and macrophages in the developing CNS. Neurotoxicol. 2001;22:619-624.
Thompson К, Tsirka S. The diverse roles of microglia in theneurodegenerative aspects of central nervoussystem (CNS) autoimmunity. Int J Mol Sci. 2017;18:504-522. doi: 10.3390 / ijms18030504 www.mdpi.com/journal/ijms.
Tichauer J, Saud K, von Bernhardi R. Modulation by astrocytes of microglial cell-mediated neuroinflammation: effect on the activation of microglial signaling pathways. Neuroimmunomodulation. 2007;14:168-174. doi: 10.1159/000110642.
Trapp BD, Nave KA. Multiple sclerosis: An immune or neurodegenerative disorder?. Ann Rev Neurosci. 2008;31:247-269.
Van Horssen J, Singh S, van der Pol S et al. Clusters of activated microglia in normal-appearing white matter show signsof innate immune activation. J Neuroinflamm. 2012;9. Р. 156. doi: 10.1186/1742-2094-9-156.
Von Bernhardi R. Glial cell dysregulation: a new perspective on Alzheimer disease. Neurotox Res. 2007;12:215-232. doi: 10.1007/bf03033906.
Wolf SA, Boddeke HW, Kettenmann H. Microglia in physiology and disease. Ann Rev Physiol. 2017;79. P. 619-643. doi: 10.1146/annurev-physiol-022516-034406.
Xiao-Guang Luo, Jian-Qing Ding, Sheng-Di Chen. Microglia in the aging brain: relevance to neurodegeneration. Mol Neurodegener. 2010;5:12. doi: 10.1186/1750-1326-5-12.
Zhang J, Malik A, Choi H et al. Microglial CR3 activation triggers long-term synaptic depression in the hippocampus via NADPH oxidase. Neuron. 2012;82:195-207. doi: 10.1016/j.neuron.2014.01.043.