Перспективи застосування генної терапії та нанотехнологій для лікування нейродегенеративних захворювань

Автор(и)

DOI:

https://doi.org/10.30978/UNJ2023-1-4-45

Ключові слова:

генна терапія; нейродегенеративні захворювання; неврологічні захворювання; нанотехнології; нанотехнології в неврології; генна терапія в неврології; хвороба Гантінгтона; хвороба Альцгеймера; нанотерапія; хвороба Паркінсона.

Анотація

У літературному огляді робиться спроба систематизації наукової літератури щодо можливих перспектив застосування генної терапії та нанотехнологій для лікування нейродегенеративних захворювань, таких як хвороба Альцгеймера, хвороба Паркінсона і хвороба Гантингтона. Коротко описуються ймовірні етіологія та патогенез наведених захворювань, наводяться приклади можливих генів-мішеней для проведення терапевтичного втручання. Перелічуються недоліки традиційних стратегій лікування нейродегенеративних захворювань, включаючи типові перешкоди, пов’язані зі шляхами доставки лікарських засобів, подоланням гематоенцефалічного бар’єра, токсичністю тощо. Описуються перспективи застосування нанотехнологій як технічних засобів для модифікації різних структур на молекулярному рівні для отримання бажаних характеристик. Зокрема, нанотехнології описуються як засоби, що потенційно здатні допомагати у діагностиці та лікуванні нейродегенеративних захворювань, полегшувати доставку ліків у ЦНС, підвищувати їхню ефективність тощо. Розглядається можливість використання нанокомплексів, виготовлених із застосуванням різних сучасних технологій, серед яких на особливу увагу заслуговують металеві, неорганічні, полімерні, ліпідні наночастинки тощо. Також описуються перспективи застосування генної терапії, її потенціал до лікування розладів нервової системи шляхом доставки генетичного матеріалу для виробництва молекул з терапевтичною дією. У контексті генної терапії робиться особливий акцент на технології CRISPR/Cas9, що була запроваджена для редагування генів в еукаріотичних клітинах та є економічно ефективним і перспективним методом. Таким чином, цей літературний огляд зосереджений на застосуванні нанотехнологій та генної терапії для лікування нейродегенеративних захворювань.

Біографії авторів

Є.В. Руденко, Національний медичний університет імені О.О. Богомольця, Київ

Руденко Єлизавета В’ячеславівна
студентка

С.М. Шоломон , Національний медичний університет імені О.О. Богомольця, Київ

Шоломон Світлана Миколаївна
асистент кафедри неврології

Посилання

A map of human genome variation from population-scale sequencing. Nature. 2010;467(7319):1061-73. http://doi.org/10.1038/nature09534.

Arotcarena ML, Teil M, Dehay B. Autophagy in synucleinopathy: the overwhelmed and defective machinery. Cells. 2019;8(6):565. http://doi.org/10.3390/cells8060565.

Augood SJ, Faull RL, Emson PC. Dopamine D1 and D2 receptor gene expression in the striatum in Huntington’s disease. Ann Neurol. 1997;42(2):215-21. http://doi.org/10.1002/ana.410420213.

Bagyinszky E, Giau VV, Shim K, Suk K, An SS, Kim S. Role of inflammatory molecules in the Alzheimer’s disease progression and diagnosis. J Neurol Sci. 2017;376:242-54. http://doi.org/10.1016/j.jns.2017.03.031.

Bardai FH, Price V, Zaayman M, Wang L, D’Mello SR. Histone deacetylase-1 (HDAC1) is a molecular switch between neuronal survival and death. J Biol Chem. 2012;287(42):35444-53. http://doi.org/10.1074/jbc.m112.394544.

Barman NC, Khan NM, Islam M, et al. CRISPR-Cas9: A promising genome editing therapeutic tool for Alzheimer’s disease — a narrative review. Neurol Ther. 2020;9(2):419-34. http://doi.org/10.1007/s40120-020-00218-z.

Bates GP, Dorsey R, Gusella JF, et al. Huntington disease. Nat Rev Dis Primers. 2015;1(1). http://doi.org/10.1038/nrdp.2015.5.

Black JB, Adler AF, Wang HG, et al. Targeted epigenetic remodeling of endogenous loci by CRISPR/Cas9-based transcriptional activators directly converts fibroblasts to neuronal cells. Cell Stem Cell. 2016;19(3):406-14. http://doi.org/10.1016/j.stem.2016.07.001.

Bradford J, Shin JY, Roberts M, Wang CE, Li XJ, Li S. Expression of mutant huntingtin in mouse brain astrocytes causes age-dependent neurological symptoms. Proc National Acad Sci. 2009;106(52):22480-5. http://doi.org/10.1073/pnas.0911503106.

Caligiore D, Helmich RC, Hallett M, et al. Parkinson’s disease as a system-level disorder. NPJ Park Dis. 2016;2(1). http://doi.org/10.1038/npjparkd.2016.25.

Ceccon A, Tugarinov V, Clore GM. TiO2 nanoparticles catalyze oxidation of huntingtin exon 1-derived peptides impeding aggregation: a quantitative NMR study of binding and kinetics. J Am Chem Soc. 2018;141(1):94-7. http://doi.org/10.1021/jacs.8b11441.

Chang CW, Yang SY, Yang CC, Chang CW, Wu YR. Plasma and serum alpha-synuclein as a biomarker of diagnosis in patients with Parkinson’s disease. Front Neurol. 2020;10. http://doi.org/10.3389/fneur.2019.01388.

Chen S, Owens GC, Makarenkova H, Edelman DB. HDAC6 regulates mitochondrial transport in hippocampal neurons. PLoS ONE. 2010;5(5):e10848. http://doi.org/10.1371/journal.pone.0010848.

Cong W, Bai R, Li YF, Wang L, Chen C. Selenium nanoparticles as an efficient nanomedicine for the therapy of Huntington’s disease. ACS Appl Mater Amp Interfaces. 2019;11(38):34725-35. http://doi.org/10.1021/acsami.9b12319.

Cui Z, Lockman P, Atwood C, et al. Novel D-penicillamine carrying nanoparticles for metal chelation therapy in Alzheimer’s and other CNS diseases. Eur J Pharm Biopharm. 2005;59(2):263-72. http://doi.org/10.1016/j.ejpb.2004.07.009.

Cummings JL. Alzheimer Disease. JAMA. 2002;287(18):2335. http://doi.org/10.1001/jama.287.18.2335.

D’Onofrio M, Munari F, Assfalg M. Alpha-synuclein — nanoparticle interactions: understanding, controlling and exploiting conformational plasticity. Molecules. 2020;25(23):5625. http://doi.org/10.3390/molecules25235625.

da Silva Córneo E, de Bem Silveira G, Scussel R, et al. Effects of gold nanoparticles administration through behavioral and oxidative parameters in animal model of Parkinson’s disease. Colloids Surf B. 2020;196:111302. http://doi.org/10.1016/j.colsurfb.2020.111302.

Dabrowska M, Ciolak A, Kozlowska E, Fiszer A, Olejniczak M. Generation of new isogenic models of Huntington’s disease using CRISPR-Cas9 technology. Int J Mol Sci. 2020;21(5):1854. http://doi.org/10.3390/ijms21051854.

De Simone A, La Pietra V, Betari N, et al. Discovery of the first-in-class GSK-3β/HDAC dual inhibitor as disease-modifying agent to combat Alzheimer’s disease. ACS Med Chem Lett. 2019;10(4):469-74. http://doi.org/10.1021/acsmedchemlett.8b00507.

Debnath K, Pradhan N, Singh BK, Jana NR, Jana NR. Poly(trehalose) nanoparticles prevent amyloid aggregation and suppress polyglutamine aggregation in a Huntington’s disease model mouse. ACS Appl Mater Amp Interfaces. 2017;9(28):24126-39. http://doi.org/10.1021/acsami.7b06510.

Deglon N, Vachey G, Rey M, Perrier A. I07 Allele specific gene editing for huntington’s disease mediated by the KAMICAS9 self-inactivating CRISPR/CAS9 system. У: EHDN 2018 Plenary Meeting, Vienna, Austria, Programme and Abstracts: BMJ Publishing Group Ltd; 2018. http://doi.org/10.1136/jnnp-2018-ehdn.243.

Eftekharzadeh B, Daigle JG, Kapinos LE, et al. Tau protein disrupts nucleocytoplasmic transport in Alzheimer’s disease. Neuron. 2018;99(5):925-40. http://doi.org/10.1016/j.neuron.2018.07.039.

Ekman FK, Ojala DS, Adil MM, Lopez PA, Schaffer DV, Gaj T. CRISPR-Cas9-mediated genome editing increases lifespan and improves motor deficits in a Huntington’s disease mouse model. Mol Ther Nucleic Acids. 2019;17:829-39. http://doi.org/10.1016/j.omtn.2019.07.009.

Fernandes C, Martins C, Fonseca A, et al. PEGylated PLGA Nanoparticles as a smart carrier to increase the cellular uptake of a coumarin-based monoamine oxidase B Inhibitor. ACS Appl Mater Amp Interfaces. 2018;10(46):39557-69. http://doi.org/10.1021/acsami.8b17224.

Gao N, Sun H, Dong K, Ren J, Qu X. Gold-nanoparticle-based multifunctional amyloid-β inhibitor against Alzheimer’s disease. Chem Eur J. 2014;21(2):829-35. http://doi.org/10.1002/chem.201404562.

Ghalandari B, Asadollahi K, Shakerizadeh et al. Microtubule network as a potential candidate for targeting by gold nanoparticle-assisted photothermal therapy. J Photochem Photobiol B. 2019;192:131-40. http://doi.org/10.1016/j.jphotobiol.2019.01.012.

Gholami Derami H, Gupta P, Weng K, et al. Reversible photothermal modulation of electrical activity of excitable cells using polydopamine nanoparticles. Adv Mater. 2021;33(32):2008809. http://doi.org/10.1002/adma.202008809.

Gobbi M, Re F, Canovi M, et al. Lipid-based nanoparticles with high binding affinity for amyloid-β1-42 peptide. Biomaterials. 2010;31(25):6519-29. http://doi.org/10.1016/j.biomaterials.2010.04.044.

Godinho BM, Ogier JR, Darcy R, O’Driscoll CM, Cryan JF. Self-assembling modified β-Cyclodextrin nanoparticles as neuronal siRNA delivery vectors: focus on Huntington’s disease. Mol Pharm. 2013;10(2):640-9. http://doi.org/10.1021/mp3003946.

Green KN, Steffan JS, Martinez-Coria H, et al. Nicotinamide restores cognition in Alzheimer’s disease transgenic mice via a mechanism involving sirtuin inhibition and selective reduction of Thr231-Phosphotau. J Neurosci. 2008;28(45):11500-10. http://doi.org/10.1523/jneurosci.3203-08.2008.

György B, Lööv C, Zaborowski MP, et al. CRISPR/Cas9 mediated disruption of the Swedish APP allele as a therapeutic approach for early-onset Alzheimer’s disease. Mol Ther Nucleic Acids. 2018;11:429-40. http://doi.org/10.1016/j.omtn.2018.03.007.

Hanafy AS, Farid RM, Helmy MW, ElGamal SS. Pharmacological, toxicological and neuronal localization assessment of galantamine/chitosan complex nanoparticles in rats: future potential contribution in Alzheimer’s disease management. Drug Deliv. 2016;23(8):3111-22. http://doi.org/10.3109/10717544.2016.1153748.

He G, Luo W, Li P, et al. Gamma-secretase activating protein is a therapeutic target for Alzheimer’s disease. Nature. 2010;467(7311):95-8. http://doi.org/10.1038/nature09325.

Hegazy MA, Maklad HM, Samy DM, Abdelmonsif DA, El Sabaa BM, Elnozahy FY. Cerium oxide nanoparticles could ameliorate behavioral and neurochemical impairments in 6-hydroxydopamine induced Parkinson’s disease in rats. Neurochem Int. Верес. 2017;108:361-71. http://doi.org/10.1016/j.neuint.2017.05.011.

Heidenreich M, Zhang F. Applications of CRISPR–Cas systems in neuroscience. Nat Rev Neurosci. 2015;17(1):36-44. http://doi.org/10.1038/nrn.2015.2.

Heman-Ackah SM, Bassett AR, Wood MJ. Precision modulation of neurodegenerative disease-related gene expression in human iPSC-Derived neurons. Sci Rep. 2018;6(1):28420. http://doi.org/10.1038/srep28420.

Hoppe JB, Coradini K, Frozza RL, et al. Free and nanoencapsulated curcumin suppress β-amyloid-induced cognitive impairments in rats: Involvement of BDNF and Akt/GSK-3β signaling pathway. Neurobiol Learn Mem. 2013;106:134-44. http://doi.org/10.1016/j.nlm.2013.08.001.

Hsiao HY, Chen YC, Chen HM, Tu PH, Chern Y. A critical role of astrocyte-mediated nuclear factor-κB-dependent inflammation in Huntington’s disease. Hum Mol Genet. 2013;22(9):1826-42. http://doi.org/10.1093/hmg/ddt036.

Jakob-Roetne R, Jacobsen H. Alzheimer’s disease: from pathology to therapeutic approaches. Angew Chem Int Ed. 2009;48(17):3030-59. http://doi.org/10.1002/anie.200802808.

Jaruszewski KM, Ramakrishnan S, Poduslo JF, Kandimalla KK. Chitosan enhances the stability and targeting of immuno-nanovehicles to cerebro-vascular deposits of Alzheimer’s disease amyloid protein. Nanomedicine. 2012;8(2):250-60. http://doi.org/10.1016/j.nano.2011.06.008.

Jeon SG, Cha MY, Kim JI, et al. Vitamin D-binding protein-loaded PLGA nanoparticles suppress Alzheimer’s disease-related pathology in 5XFAD mice. Nanomedicine. 2019;17:297-307. http://doi.org/10.1016/j.nano.2019.02.004.

Jin H, Chen WQ, Tang XW, et al. Polyhydroxylated C60, fullerenols, as glutamate receptor antagonists and neuroprotective agents. J Neurosci Res. 2000;62(4):600-7. http://doi.org/10.1002/1097-4547(20001115)62:4<600::AID-JNR15>3.0.CO;2-F.

Kacher R, Lamazière A, Heck N, et al. CYP46A1 gene therapy deciphers the role of brain cholesterol metabolism in Huntington’s disease. Brain. 2019;142(8):2432-50. http://doi.org/10.1093/brain/awz174.

Kalia LV, Lang AE. Parkinson’s disease. Lancet. 2018;386(9996): 896-912. http://doi.org/10.1016/s0140-6736(14)61393-3.

Kampmann M. A CRISPR approach to neurodegenerative diseases. Trends Mol Med. 2018;23(6):483-5. http://doi.org/10.1016/j.molmed.2017.04.003.

Kim GH, Kim JE, Rhie SJ, Yoon S. The role of oxidative stress in neurodegenerative diseases. Exp Neurobiol. 2015;24(4):325-40. http://doi.org/10.5607/en.2015.24.4.325.

Klaassens BL, van Gerven JM, Klaassen ES, van der Grond J, Rombouts SA. Cholinergic and serotonergic modulation of resting state functional brain connectivity in Alzheimer’s disease. NeuroImage. 2019;199:143-52. http://doi.org/10.1016/j.neuroimage.2019.05.044.

Kurakhmaeva KB, Djindjikhashvili IA, Petrov VE, et al. Brain targeting of nerve growth factor using poly(butyl cyanoacrylate) nanoparticles. J Drug Target. 2009;17(8):564-74. http://doi.org/10.1080/10611860903112842.

Kwon HJ, Kim D, Seo K, et al. Ceria nanoparticle systems for selective scavenging of mitochondrial, intracellular, and extracellular reactive oxygen species in Parkinson’s disease. Angew Chem. 2018;130(30):9552-6. http://doi.org/10.1002/ange.201805052.

Lafuente JV, Requejo C, Ugedo L. Nanoneuroprotection and Nanoneurotoxicology: In: Nanodelivery of therapeutic agents in Parkinson’s disease. Elsevier; 2019:263-79. http://doi.org/10.1016/bs.pbr.2019.03.004.

Leoni V, Long JD, Mills JA, Di Donato S, Paulsen JS. Plasma 24S-hydroxycholesterol correlation with markers of Huntington disease progression. Neurobiol Dis. 2013;55:37-43. http://doi.org/10.1016/j.nbd.2013.03.013.

Li Y, Chen Z, Lu Z, et al. «Cell-addictive» dual-target traceable nanodrug for Parkinson’s disease treatment via flotillins pathway. Theranostics. 2018;8(19):5469-81. http://doi.org/10.7150/thno.28295.

Liu Z, Gao X, Kang T, et al. B6 peptide-modified PEG-PLA nanoparticles for enhanced brain delivery of neuroprotective peptide. Bioconjugate Chem. 2013;24(6):997-1007. http://doi.org/10.1021/bc400055h.

Liu Z, Zhou T, Ziegler AC, Dimitrion P, Zuo L. Oxidative stress in neurodegenerative diseases: from molecular mechanisms to clinical applications. oxidative Med Cell Longev. 2017;2017:1-11. http://doi.org/10.1155/2017/2525967.

Lovell MA, Robertson JD, Teesdale WJ, Campbell JL, Markesbery WR. Copper, iron and zinc in Alzheimer’s disease senile plaques. J Neurol Sci. 1998;158(1):47-52. http://doi.org/10.1016/s0022-510x(98)00092-6.

Lu Z, Marks E, et al. Altered selenium status in Huntington’s disease: Neuroprotection by selenite in the N171-82Q mouse model. Neurobiol Dis. 2014;71:34-42. http://doi.org/10.1016/j.nbd.2014.06.022.

ManafiRad A, Farzadfar F, Habibi L, et al. Is amyloid-β an innocent bystander and marker in Alzheimer’s disease? Is the liability of multivalent cation homeostasis and its influence on amyloid-β function the real mechanism? J Alzheimers Dis. 2018;42(1):69-85. http://doi.org/10.3233/jad-140321.

Mangialasche F, Solomon A, Winblad B, Mecocci P, Kivipelto M. Alzheimer’s disease: clinical trials and drug development. Lancet Neurol. 2010 Jul;9(7):702-16. http://doi.org/10.1016/S1474-4422(10)70119-8. Erratum in: Lancet Neurol. 2011 Jun;10(6):501. PMID: 20610346.

Mani S, Jindal D, Singh M. Gene therapy, A potential therapeutic tool for neurological and neuropsychiatric disorders: applications, challenges and future prospective. Curr Gene Ther. 2023;23(1):20-40. http://doi.org/10.2174/1566523222666220328142427.

Manjunath K, Venkateswarlu V. Pharmacokinetics, tissue distribution and bioavailability of nitrendipine solid lipid nanoparticles after intravenous and intraduodenal administration. J Drug Target. 2006;14(9):632-45. http://doi.org/10.1080/10611860600888850.

Marullo M, Valenza M, Leoni V, et al. Pitfalls in the detection of cholesterol in Huntington’s disease models. PLoS Curr. 2012. 4:e505886e9a1968. PMID: 23145355. PMCID: PMC3493072.

Matsuzaki K. Physicochemical interactions of amyloid β-peptide with lipid bilayers. Biochim Biophys Acta (BBA) Biomembr. 2007;1768(8):1935-42. http://doi.org/10.1016/j.bbamem.2007.02.009.

Modi G, Pillay V, Choonara YE. Advances in the treatment of neurodegenerative disorders employing nanotechnology. Ann New York Acad Sci. 2009;1184(1):154-72. http://doi.org/10.1111/j.1749-6632.2009.05108.x.

Mohanraj K, Sethuraman S, Krishnan UM. Development of poly(butylene succinate) microspheres for delivery of levodopa in the treatment of Parkinson’s disease. J Biomed Mater Res. 2018;101B(5):840-7. http://doi.org/10.1002/jbm.b.32888.

Monge-Fuentes V, Biolchi Mayer A, Lima MR, et al. Dopamine-loaded nanoparticle systems circumvent the blood–brain barrier restoring motor function in mouse model for Parkinson’s disease. Sci Rep. 2021;11(1). http://doi.org/10.1038/s41598-021-94175-8.

Mourtas S, Canovi M, Zona C, et al. Curcumin-decorated nanoliposomes with very high affinity for amyloid-β1-42 peptide. Biomaterials. 2011;32(6):1635-45. http://doi.org/10.1016/j.biomaterials.2010.10.027.

Naqvi S, Panghal A, Flora SJ. Nanotechnology: a promising approach for delivery of neuroprotective drugs. Front Neurosci. 2020;14:494. http://doi.org/10.3389/fnins.2020.00494.

Naskhi A, Jabbari S, Othman GQ, et al. Vitamin K1 as a potential molecule for reducing single-walled carbon nanotubes-stimulated α-synuclein structural changes and cytotoxicity. Int J Nanomed. 2019;14:8433-44. http://doi.org/10.2147/ijn.s223182.

Ngowi EE, Wang YZ, Qian L, et al. The application of nanotechnology for the diagnosis and treatment of brain diseases and disorders. Front Bioeng Biotechnol. 2021;9:629832. http://doi.org/10.3389/fbioe.2021.629832.

Nguyen TT, Dung Nguyen TT, et al. Nanotechnology-based drug delivery for central nervous system disorders. Biomed Amp Pharmacother. 2021;143:112117. http://doi.org/10.1016/j.biopha.2021.112117.

Nguyen TT, Nguyen TT, Nguyen TK, Vo TK, Vo VG. Advances in developing therapeutic strategies for Alzheimer’s disease. Biomed Amp Pharmacother. 2021;139:111623. http://doi.org/10.1016/j.biopha.2021.111623.

Nguyen TT, Ta QT, Nguyen TK, Nguyen TT, Van Giau V. Type 3 diabetes and its role implications in Alzheimer’s disease. Int J Mol Sci. 2020;21(9):3165. http://doi.org/10.3390/ijms21093165.

Nguyen TT, Ta QT, Nguyen TT, Le TT, Vo VG. Role of insulin resistance in the Alzheimer’s disease progression. Neurochem Res. 2020;45(7):1481-91. http://doi.org/10.1007/s11064-020-03031-0.

Niu S, Zhang LK, Zhang L,et al. Inhibition by multifunctional magnetic nanoparticles loaded with alpha-synuclein RNAi plasmid in a Parkinson’s disease Model. Theranostics. 2018;7(2):344-56. http://doi.org/10.7150/thno.16562.

Ortiz-Virumbrales M, Moreno CL, Kruglikov I, et al. CRISPR/Cas9-Correctable mutation-related molecular and physiological phenotypes in iPSC-derived Alzheimer’s PSEN2 N141I neurons. Acta Neu­ropathol Commun. 2017;5(1). http://doi.org/10.1186/s40478-017-0475-z.

Park H, Oh J, Shim G, et al. In vivo neuronal gene editing via CRISPR–Cas9 amphiphilic nanocomplexes alleviates deficits in mouse models of Alzheimer’s disease. Nat Neurosci. 201;22(4):524-8. http://doi.org/10.1038/s41593-019-0352-0.

Passoni A, Favagrossa M, Colombo L, et al. Efficacy of cholesterol nose-to-brain delivery for brain targeting in Huntington’s disease. ACS Chem Neurosci. 2019;11(3):367-72. http://doi.org/10.1021/acschemneuro.9b00581.

Pillay S, Pillay V, Choonara YE, et al. Design, biometric simulation and optimization of a nano-enabled scaffold device for enhanced delivery of dopamine to the brain. Int J Pharm. 2009;382(1-2):277-90. http://doi.org/10.1016/j.ijpharm.2009.08.021.

Poewe W, Seppi K, Tanner CM, et al. Parkinson disease. Nat Rev Dis Primers. 2017;3(1):17013. http://doi.org/10.1038/nrdp.2017.13.

Qu ZS, Li L, Sun XJ, et al. Glycogen synthase kinase-3 regulates production of amyloid-βpeptides and tau phosphorylation in diabetic rat brain. Sci World J. 2014;2014:1-8. http://doi.org/10.1155/2014/878123.

Raj R, Wairkar S, Sridhar V, Gaud R. Pramipexole dihydrochloride loaded chitosan nanoparticles for nose to brain delivery: Development, characterization and in vivo anti-Parkinson activity. Int J Biol Macromol. 2017;109:27-35. http://doi.org/10.1016/j.ijbiomac.2017.12.056.

Ramachandran S, Thangarajan S. Thymoquinone loaded solid lipid nanoparticles counteracts 3-nitropropionic acid induced motor impairments and neuroinflammation in rat model of Huntington’s disease. Metab Brain Dis. 2018;33(5):1459-70. http://doi.org/10.1007/s11011-018-0252-0.

Rukmangathen R, Yallamalli IM, Yalavarthi PR. Biopharmaceutical potential of selegiline loaded chitosan nanoparticles in the management of Parkinson’s disease. Curr Drug Discov Technol. 2019; 16(4):417-25. http://doi.org/10.2174/1570163815666180418144019.

Sánchez-López F, Tasset I, Agüera E, et al. Oxidative stress and inflammation biomarkers in the blood of patients with Hun­tington’s disease. Neurol Res. 2012;34(7):721-4. http://doi.org/10.1179/1743132812y.0000000073.

Saraiva J, Nobre RJ, Pereira de Almeida L. Gene therapy for the CNS using AAVs: The impact of systemic delivery by AAV9. J Control Release. 2016;241:94-109. http://doi.org/10.1016/j.jconrel.2016.09.011.

Sardoiwala MN, Srivastava AK, Kaundal B, Karmakar S, Choudhury SR. Recuperative effect of metformin loaded polydopamine nanoformulation promoting EZH2 mediated proteasomal degradation of phospho-α-synuclein in Parkinson’s disease model. Nanomedicine. 2020;24:102088. http://doi.org/10.1016/j.nano.2019.102088.

Serrano-Pozo A, Frosch MP, Masliah E, Hyman BT. Neuropathological alterations in Alzheimer disease. Cold Spring Harb Perspect Med. 2011;1(1):a006189. http://doi.org/10.1101/cshperspect.a006189.

Shayganfard M. A review on chitosan in drug delivery for the treatment of neurological and psychiatric disorders. Curr Pharm Biotechnol. 2021;22. http://doi.org/10.2174/1389201022666210622111028.

Shin JY, Fang ZH, Yu ZX, Wang CE, Li SH, Li XJ. Expression of mutant huntingtin in glial cells contributes to neuronal excitotoxicity. J Cell Biol. 2005;171(6):1001-12. http://doi.org/10.1083/jcb.200508072.

Soares Romeiro LA, da Costa Nunes JL, de Oliveira Miranda C, et al. Novel sustainable-by-design HDAC inhibitors for the treatment of Alzheimer’s disease. ACS Med Chem Lett. 2019;10(4):671-6. http://doi.org/10.1021/acsmedchemlett.9b00071.

Soldner F, Stelzer Y, Shivalila CS, et al. Parkinson-associated risk variant in distal enhancer of α-synuclein modulates target gene expression. Nature. 2016;533(7601):95-9. http://doi.org/10.1038/nature17939.

Sonawane SK, Ahmad A, Chinnathambi S. Protein-capped metal nanoparticles inhibit tau aggregation in Alzheimer’s disease. ACS Omega. 2019;4(7):12833-40. http://doi.org/10.1021/acsomega.9b01411.

Soursou G, Alexiou A, Ashraf G, Siyal A, Mushtaq G, Kamal M. Ap­­plications of nanotechnology in diagnostics and therapeutics of Al­zhei­mer’s and Parkinson’s disease. Curr Drug Metab. 2018;16(8): 705-12. http://doi.org/10.2174/138920021608151107125049.

Squadrone S, Brizio P, Abete MC, Brusco A. Trace elements profile in the blood of Huntington’ disease patients. J Trace Elements Med Biol. 2020;57:18-20. http://doi.org/10.1016/j.jtemb.2019.09.006.

Sridhar V, Gaud R, Bajaj A, Wairkar S. Pharmacokinetics and pharmacodynamics of intranasally administered selegiline nanoparticles with improved brain delivery in Parkinson’s disease. Nanomedicine. 2018;14(8):2609-18. http://doi.org/10.1016/j.nano.2018.08.004.

Stacy M, Jankovic J. Current approaches in the treatment of Parkinson’s disease. Annu Rev Med. 1993;44(1):431-40. http://doi.org/10.1146/annurev.me.44.020193.002243.

Stoy N, Mackay GM, Forrest CM, et al. Tryptophan metabolism and oxidative stress in patients with Huntington’s dise­ase. J Neurochem. 2005;93(3):611-23. http://doi.org/10.1111/j.1471-4159.2005.03070.x.

Tang T, Valenzuela A, Petit F, et al. In vivo MRI of functionalized iron oxide nanoparticles for brain inflammation. Contrast Media Amp Mol Imaging. 2018;2018:1-10. http://doi.org/10.1155/2018/3476476.

Tang TS, Tu H, Chan EY, et al. Huntingtin and Huntingtin-associated protein 1 influence neuronal calcium signaling mediated by inositol-(1,4,5) triphosphate receptor type 1. Neuron. 2003;39(2):227-39. http://doi.org/10.1016/s0896-6273(03)00366-0.

Trohn T, Kim N, Isho FN, Mack JM. The Potential of CRISPR/Cas9 gene editing as a treatment strategy for Alzheimer’s disease. J Alzheimer S Dis Amp Park. 2018;8(3):439. http://doi.org/10.4172/2161-0460.1000439.

Valenza M, Chen JY, Di Paolo E, et al. Cholesterol-loaded nanoparticles ameliorate synaptic and cognitive function in H untington’s disease mice. EMBO Mol Med. 2015;7(12):1547-64. http://doi.org/10.15252/emmm.201505413.

Veres A, Gosis BS, Ding Q, et al. Low incidence of off-target mutations in individual CRISPR-Cas9 and TALEN targeted human stem cell clones detected by whole-genome sequencing. Cell Stem Cell. 2014;15(1):27-30. http://doi.org/10.1016/j.stem.2014.04.020.

Vinogradov SV, Batrakova EV, Kabanov AV. Nanogels for oligonucleotide delivery to the brain. Bioconjugate Chem. 2004;15(1):50-60. http://doi.org/10.1021/bc034164r.

Vong LB, Sato Y, Chonpathompikunlert P, Tanasawet S, Hutamekalin P, Nagasaki Y. Self-assembled polydopamine nanoparticles improve treatment in Parkinson’s disease model mice and suppress dopamine-induced dyskinesia. SSRN Electron J. 2020Jun:109:220-228. http://doi.org/10.2139/ssrn.3539216.

Wang X, Cao C, Huang J, et al. One-step generation of triple gene-targeted pigs using CRISPR/Cas9 system. Sci Rep. 2018;6(1):20620. http://doi.org/10.1038/srep20620.

Wild EJ, Tabrizi SJ. Therapies targeting DNA and RNA in Huntington’s disease. Lancet Neurol. 2018;16(10):837-47. http://doi.org/10.1016/s1474-4422(17)30280-6.

Witt J, Marks WJ. An update on gene therapy in Parkinson’s dise­ase. Curr Neurol Neurosci Rep. 2011;11(4):362-70. http://doi.org/10.1007/s11910-011-0197-8.

Xiao RZ, Zeng ZW, Zhou GL, Wang JJ, Li FZ, Wang AM. Recent advances in PEG-PLA block copolymer nanoparticles. Int J Nanomedicine. 2010;5:1057-65. http://doi.org/10.2147/IJN.S14912. PMID: 21170353; PMCID: PMC3000205..

Yang Z, Zhang Y, Yang Y, et al. Pharmacological and toxicological target organelles and safe use of single-walled carbon nanotubes as drug carriers in treating Alzheimer disease. Nanomedicine. 2010;6(3):427-41. http://doi.org/10.1016/j.nano.2009.11.007.

Yoon HH, Ye S, Lim S, et al. CRISPR-Cas9 gene editing protects from the A53T-SNCA overexpression-induced pathology of Parkinson’s disease in vivo. CRISPR J. 2022;5(1):95-108. http://doi.org/10.1089/crispr.2021.0025. PMID: 35191750.

Yoosefian M, Rahmanifar E, Etminan N. Nanocarrier for levodopa Parkinson therapeutic drug; comprehensive benserazide analysis. Artif Cells Nanomed Biotechnol. 2018;46(Supp 1):434-46. http://doi.org/10.1080/21691401.2018.1430583.

Zhang H, Hao C, Qu A, et al. Light-induced chiral iron copper selenide nanoparticles prevent β-amyloidopathy in vivo. Angew Chem. 2020;132(18):7197-204. http://doi.org/10.1002/ange.202002028.

Zhang L, Zhao P, Yue C, et al. Sustained release of bioactive hydrogen by Pd hydride nanoparticles overcomes Alzheimer’s disease. Biomaterials. 2019;197:393-404. http://doi.org/10.1016/j.biomaterials.2019.01.037.

Zhang Y, Calon F, Zhu C, Boado RJ, Pardridge WM. Intravenous nonviral gene therapy causes normalization of striatal tyrosine hydroxylase and reversal of motor impairment in experimental parkinsonism. Hum Gene Ther. 2003;14(1):1-12. http://doi.org/10.1089/10430340360464660.

Zhang YW, Thompson R, Zhang H, Xu H. APP processing in Alzhe­i­mer’s disease. Mol Brain. 2011;4(1):3. http://doi.org/10.1186/1756-6606-4-3.

Zhao N, Yang X, Calvelli HR, et al. Antioxidant nanoparticles for concerted inhibition of α-synuclein fibrillization, and attenuation of microglial intracellular aggregation and activation. Front Bioeng Biotechnol. 2020;8:112. http://doi.org/10.3389/fbioe.2020.00112.

##submission.downloads##

Опубліковано

2023-11-18

Номер

Розділ

Огляди